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Abstract
Sign invariance plays an important role in the study of an explicit solution to
single partial differential equations. In this paper, we extend the sign invariant
theory to study the nonlinear reaction–diffusion system. As a consequence, we
obtain some new explicit solutions to the resulting systems, and we illustrate
the exact solutions for a nonlinear parabolic system.

PACS numbers: 02.20.Tw, 11.30.Na, 44.05.+e, 05.45.Yv

1. Introduction

Nonlinear reaction–diffusion systems (RDs) have been widely studied over the past decades.
These systems arise naturally as models of the evolution problem in the real world [1–6]. In
this paper, we consider the nonlinear reaction–diffusion systems (RDs)

ut = (f (u, v)ux)x + g(u, v) vt = (p(u, v)vx)x + q(u, v), (1.1)

where u = u(x, t) and v = v(x, t) are unknown differentiable functions, the subscripts
t and x to the functions denote differentiation with respect to these variables, and
f (u, v), g(u, v), p(u, v) and q(u, v) are smooth functions to be determined later. There are
many papers devoted to the investigation of existence and uniqueness problems, asymptotic
behaviour of solutions and so on ([6, 7] and the references cited therein). On the other hand,
there are many approaches to find exact solutions of RDs, such as the Lie symmetry [8–12],
the ansatz-based method [12, 13], the Galilei-invariant method [14], the Painlevé analysis [15]
and the algebraic method [16]. In these papers, many interesting results had been obtained.

It is well known that, for a single equation, there are many theories and approaches for
finding its exact solutions, such as the Lie symmetry, non-classical method, sign-invariant
theory and so on. In these methods, sign-invariant theory plays an important role for finding
the explicit solutions of the single-diffusion equation. The sign-invariant theory was introduce
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originally by Galaktionov [17–19], which was extended by the maximum principle for second-
order linear parabolic equations, the main idea, as follows [17].

Consider a single reaction–diffusion equation

ut = (f (u)ux)x + g(u).

We assume that the solution set {u(x, t)} to the given equation is not empty. Next, we introduce
a general quadratic Hamilton–Jacobi (HJ) operator of the form

H(u) = ut − H(u) ≡ ut − [α(u)(ux)
2 + β(u)ux + h(u)],

where the functions α(u), β(u) and h(u) depend on the coefficients of the RD equation.

Definition 1. We say that the operator HJ is the sign invariant of the RD equation if it preserves
both the signs, � 0 and �0, on the solution u(x, t) to the RD equation. It means that

H(u) � 0 (� 0) in R for t = 0

�⇒ H(u) � 0 (� 0) in R for t > 0.
(1.2)

Remark 1. It is important to note that under assumption (1.2) the operator HJ is also a zero
invariant of the RD equation, i.e., there holds

H(u) = 0 in R for t = 0

�⇒ H(u) = 0 in R for t > 0.
(1.3)

Indeed, we can obtain the exact solutions for the corresponding equation by utilizing the
sign-invariant theory. In [18], the author utilized the sign-invariant theory to study maximal
sign invariants describing all possible sign invariants of a prescribe structure, and in [19], the
author considered the general first-order sign invariant for quasilinear heat equations. As a
consequence, they constructed some new exact solutions of resulting equations.

In the present paper, for finding the exact solutions of the nonlinear reaction–diffusion
system, we extend the sign-invariant theory by introducing the HJ system as follows:

H1(u, v) = ut − ξ(u, v), H2(u, v) = vt − η(u, v), (1.4)

where ξ(u, v) and η(u, v) are some smooth functions depending on the coefficients of the
RDs (1.1).

Now, we summarize the main results of the present paper. In section 2, the sign invariant is
applied to the RDs; the main results of this section are describe in theorem 2.1. In section 3, we
arrive at many separable solutions for the considered system. Section 4 contains concluding
remarks on this work.

2. Sign invariant of system (1.1)

In this section, we are looking for a sign invariant for system (1.1) of the form

H1(u, v) = ut − ξ(u, v) H2(u, v) = vt − η(u, v), (2.1)

where the smooth functions ξ(u, v), η(u, v) depend on the coefficients of the system and
determined later.
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We now state the first main result of the present paper.

Theorem 2.1. System (2.1) is a sign invariant of RDs (1.1) if the coefficients
f (u, v), g(u, v), p(u, v), q(u, v), ξ(u, v) and η(u, v) satisfy the following system of partial
differential equations:

A1 ≡ ξfuu + ηfuv + ξufu + ηufv − ξ
f 2

u

f
− η

fufv

f
+ ξuuf = 0,

A2 ≡ 2ξvfu + ξfuv + ηfvv + ηvfv − η
f 2

v

f
− ξ

fufv

f
+ 2ξuvf − ξv

puf

p
= 0,

A3 ≡ ξvfv + ξvvf − ξv

fpv

p
= 0,

A4 ≡ ξ
fu(ξ − g)

f
+ η

fv(ξ − g)

f
+ ξv

f (η − q)

p
− ξugξgu + ηgv − ξvη = 0,

A5 ≡ ξvpu + ξpuv + ηpvv + ηvpv − ξpupv

p
− ηp2

v

p
+ ηvvp = 0,

A6 ≡ ξpuu + ηpuv + ξupu + 2ηupv − ηpupv

p
+ 2ηuvp − ηufvp

f
= 0,

A7 ≡ ηupu + ηuup − ηu

fup

f
= 0,

A8 ≡ ξ
pu(η − q)

p
+ η

pv(η − q)

p
+ ηu

p(ξ − g)

f
− ηvq + ξgu + ηqv − ξηu = 0.

(2.2)

Proof. We set

J1 = H1 = ut − ξ(u, v), J2 = H2 = vt − η(u, v). (2.3)

Then by differentiating J1 and J2 with respect to t, we arrive at

J1t = H1t = utt − ξuut − ξvvt , J2t = H2t = vtt − ηuut − ηvvt , (2.4)

and substituting the second derivative utt , vtt from the RDs differentiating in t and calculating
other lower order ones vxt , vt , vxxt , uxt , ut and uxxt from system (2.3) into (2.4), we arrive at
two equations of the form

A1u
2
x + A2uxvx + A3v

2
x + A4 = 0, A5v

2
x + A6uxvx + A7u

2
x + A8 = 0. (2.5)

Then vanishing of the expression system (2.5) leads to the determining equations (2.2). �

According to the proof, to get the exact solutions of system (1.1), we must solve
f (u, v), g(u, v), p(u, v), q(u, v), ξ(u, v) and η(u, v) from the determining equations (2.2).
For the general case, the equations dependent on f (u, v), g(u, v), p(u, v), q(u, v), ξ(u, v)

and η(u, v) are complicated; it seems very hard to write down the solutions explicitly. So,
as usual, we assume the following two models which are being widely studied over the past
decades.

Case 1. f = p = 1, g �= 0, q �= 0.

Case 2. f = p �= 1, g = q = 0.
As a consequence, the following statements are valid.

Theorem 2.2. System (2.1) is a sign invariant of the RDs

ut = uxx + g(u, v), vt = vxx + q(u, v),
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if the functions g(u, v), q(u, v), ξ(u, v), and η(u, v) satisfy the following system:

ξ(u, v) = a1u + a2v + a3,

η(u, v) = b1u + b2v + b3,

ξgu + ηgv − ξug − ξvq = 0,

ξqu + ηqv − ηvq − ηug = 0.

(2.6)

It is interesting to note that the last two equations in (2.6) can be written in the form of
two coupled evolution equations:(

ξ
∂

∂u
+ η

∂

∂v
− ξu

)
g = ξvq,

(
ξ

∂

∂u
+ η

∂

∂v
− ηv

)
g = ηvg.

This means that the family of curves φ(u, v) = const. is invariant under the operator ξ∂u +η∂v.

Theorem 2.3. System (2.1) is a sign invariant of the RDs

ut = (f (u, v)ux)x, vt = (f (u, v)vx)x,

if the functions f (u, v), ξ(u, v) and η(u, v) satisfy the following system:

ξ(u, v) = a1u + a2v + a3,

η(u, v) = b1u + b2v + b3,

ξfu + ηfv = 0.

(2.7)

Hereafter, ai, bi and ci, i = 1, 2, 3, are arbitrary constants.

3. Exact solutions for cases 1 and 2

In this section, we present a full description of sign invariant and the corresponding explicit
solutions in cases 1 and 2.

Case 3.1. In this case, system (1.1) becomes a nonlinear system of evolution equations

ut = uxx + g(u, v), vt = vxx + q(u, v).

Some methods can be used to consider the system [8–12], and many solutions had been
obtained. To illustrate the notion of theorem 2.2, we have ξ(u, v), η(u, v):

ξ(u, v) = a1u + a2v + a3, η(u, v) = b1u + b2v + b3. (3.1)

For simplicity, we set a3 = b3 = 0; if a3 �= 0, b3 �= 0, we can make a translation{
u = ũ + c1

v = ṽ + c2

to obtain a3 = b3 = 0. Thus the determining equations can be formulated as follows:

ξ(u, v) = a1u + a2v, η(u, v) = b1u + b2v,

ξgu + ηgv − ξug − ξvq = 0, ξqu + ηqv − ηvq − ηug = 0.
(3.2)

Remark 2. It is easy to see that g(u, v), q(u, v) are determined by the two-dimension
dynamical, and we can solve u, v from ξ(u, v), η(u, v). But in this case, the solution which
is obtained by ξ(u, v) and η(u, v) depends on two arbitrary functions �1(x),�2(x). So if we
want to construct the exact solutions, we need to determine �1(x),�2(x) with g(u, v), q(u, v)
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by utilizing the compatibility conditions. In this paper the compatibility conditions means that
u, v, g(u, v) and q(u, v) fulfil the original system.

We assert that the resulting several cases are distinguished.

Subcase 3.1.1. a1 �= 0, a2 = 0. In this subcase ξ = a1u and η = b1u + b2v.
It is easy to have

g(u, v) = G1(α)u,

q(u, v) = u
b2
a1 G1(α) − b1

b2
G2(α),

α = vu
− b2

a1 − b1

(a1 − b2)
u

1− b2
a1 ,

u(x, t) = ea1t�1(x),

v(x, t) = b1�2(x)

a1 − b2
ea1t�1(x) + �2(x) eb2t ,

for a1 �= b2. Here �1(x) and �2(x) are smooth functions with x, and �1(x),�2(x), G1(α)

and G2(α) fulfil the following constraints:

G1(α) = 0,

�′′
2(x) − b2�2(x) + (�1(x))

b2
a1 G2(α) = 0,

�1(x) = C1 e
√

a1x + C2 e−√
a1x for a1 > 0,

�1(x) = C1 cos
√

a1x + C2 sin
√

a1x for a1 < 0.

If a1 = b2, we obtain

u(x, t) = ea1t�1(x),

v(x, t) = (b1�1(x) + �2(x)) ea1t ,

g(u, v) = G1(α)u,

q(u, v) = b1

a1
G1(α)v ln u + G2(α)v,

α = a1v − b1u ln u

a1u
.

It is easy to calculate that �1(x), �2(x),G1(α) and G2(α) satisfy the following equations:

�′′
1 + (G1 − a1)�1 = 0,

�′′
2 − a1�2 − b1�1 +

b1

a1
G1 ln �1 + G2 = 0.

Subcase 3.1.2. a1 = 0, a2 �= 0. In this subcase ξ = a2v and η = b1u + b2v. We have the
solutions as follows:

(i) � = b2
2 + 4a2b1 > 0.

u(x, t) = �1(x) eδ1t + �2(x) eδ2t ,

v(x, t) = 1

a2
(�1(x)δ1 eδ1t + �2(x)δ2 eδ2t )

where δ1 = (b2 +
√

�)/2, δ2 = (b2 − √
�)/2.

(ii) � = b2
2 + 4a2b1 = 0.

u(x, t) = (�1(x) + �2(x)t) eδt ,

v(x, t) = 1

a2
(δ�1(x) + �2(x) + �2(x)tδ) eδt

where δ = b2/2.
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(iii) � = b2
2 + 4a2b1 < 0.

u(x, t) = (�1(x) cos δ1t + �2(x) sin δ2t) eδ1t ,

v(x, t) = 1

a2
[(�1(x)δ1 + �2δ2) cos δ1t + (�2(x)δ1 − �1(x)δ2) sin δ2t)] eδ1t

where δ1 = b2/2, δ2 = (
√−�)/2.

In this case, g(u, v) and q(u, v) satisfy

a2
2v

2gvv + 2a2v(b1u + b2v)guv + (b1u + b2v)2gvv + a2b1(vgv + ugu − g) = 0,

q = 1

a2
[a2vgu + (b1u + b2v)gv],

and �1(x),�2(x), g(u, v), q(u, v) fulfil the compatibility conditions.

In particular, when a1 = b2 = 0, a2b1 > 0, the sign invariants are ξ(u, v) = a2v and
η(u, v) = b1u. Solving the sign invariants, we arrive at

g(u, v) =
(

G1(α) − G2(α)

a2
2

)
(
√

a2b1u − a2v),

q(u, v) =
(

G1(α) +
G2(α)

a2
2

)
(
√

a2b1v − b1u),

α = v2 − b1

a2
u2,

u(x, t) = e
√

a2b1tφ1(x) + e−√
a2b1tφ2(x),

v(x, t) =
√

b1

a2

(
e
√

a2b1tφ1(x) − e−√
a2b1tφ2(x)

)
,

where φ1(x), φ2(x),G1(α) and G2(α) fulfil

φ′′
1 −

√
a2b1φ1 = 0, φ′′

2 − 2G1

√
a2b1φ2 = 0, G2 = 1

2a2
2 .

Example 1. When

g(u, v) = 0

q(u, v) = −b1

b2
u

− b2
a1

(
v − 1

a1 − b2
u

)
we obtain the exact solution for nonlinear RDs


ut = uxx,

vt = vxx − b1

b2
u

− b2
a1

(
v − 1

a1 − b2
u

)
,

as follows:
u(x, t) = ea1t�1(x),

v(x, t) = b1�2(x)

a1−b2
ea1t�1(x) + �2(x) eb2t ,

�1(x) = C1 e
√

a1x + C2 e−√
a1x for a1 > 0,

�1(x) = C1 cos
√

a1x + C2 sin
√

a1x for a1 < 0,

�2(x) = C3 e
√

b2−1x + C4 e−√
b2−1x for b2 > 1,

�2(x) = C3 cos
√

1 − b2x + C4 sin
√

1 − b2x for b2 < 1.

Example 2. When

g(u, v) = β1u
1+α1v−α1 , q(u, v) = β2u

α2v1−α2 ,



Separation of variables solutions of nonlinear reaction–diffusion systems 3395

the RDs are the biological pattern model arising in hydra [20],

ut = uxx + β1u
1+α1v−α1 , vt = vxx + β2u

α2v1−α2 .

It is invariant with respect to the Galilei algebra AG(1, 1) [11]. By a straightforward calculation
we obtain that {

ξ(u, v) = a1u,

η(u, v) = b2v,

is sign invariant of the system, and the explicit solutions are as follows:

u(x, t) = ea1t�1(x), v(x, t) = eb2t�2(x),

where �1(x) and �2(x) fulfil the constraints:

�′′
1 +

[
β1

(
�1

�2

)α1

− a1

]
�1 = 0, �′′

2 +

[
β2

(
�1

�2

)α2

− b2

]
�2 = 0.

Case 3.2. In this case, the standard nonlinear heat equations

ut = (f (u, v)ux)x, vt = (f (u, v)vx)x, (3.3)

follow from the system (1.1). On the basis of theorem 2.3, the determining equations (2.2)
are as follows:

ξ(u, v) = a1u + a2v + a3,

η(u, v) = b1u + b2v + b3,

ξfu + ηfv = 0.

(3.4)

Similar to case 3.1, we set a3 = b3 = 0 and consider the following subcases.

Subcase 3.2.1. a1 �= 0, a2 = 0. In this subcase ξ(u, v) = a1u and η(u, v) = b1u + b2v.
Solving (3.4), we have

(i) a1 �= b2:

f (u, v) = F(α), α = a1v − b1u − b2v

(a1 − b2)u
b2
a1

,

u(x, t) = ea1t�1(x), v(x, t) = b1�1(x)

a1 − b2
ea1t�2(x) + �2(x) eb2t ,

where �1(x),�2(x) and F(α) satisfy

F�′′
1 + Fα

(
�′

2�
− b2

a1
1 − b2

a1
�2�

− b2−a1
a1

1 �′
1

)
�′

1 − a1�1 = 0,

F�′′
2 + Fα

(
�′

2�
− b2

a1
1 − b2

a1
�2�

− b2−a1
a1

1 �′
1

)
�′

2 − b2�2 = 0.

(ii) a1 = b2:

f (u, v) = F(α), α = a1v − b1u ln u

a1u
,

u(x, t) = ea1t�1(x), v(x, t) = (b1�1(x)t + �2(x)) ea1t ,

where �1(x),�2(x) and F(α) satisfy the following identities:

F�′′
1 + Fβ

(
�′

2�1 − �′
1�2

�2
1

+
b1

a1�1

)
�′

1 − a1�1 = 0,

F�′′
2 + Fβ

(
�′

2�1 − �′
1�2

�2
1

+
b1

a1�1

)
�′

2 − a1�2 = 0.



3396 H Jiayi and Y Hui

Subcase 3.2.2. a1 = 0. In this case, ξ(u, v) = a2v and η(u, v) = b1u + b2v. We have the
solutions of (3.3) as follows.

(i) � = b2
2 + 4a2b1 > 0:

f (u, v) = F(α),

α = −1

2
ln

∣∣∣∣b1

a2
+

b2v

a2u
− v2

u2

∣∣∣∣ +
a2√
�

ln

∣∣∣∣∣−2a2v + b2u − √
�u

−2a2v + b2u +
√

�u

∣∣∣∣∣ + c,

u(x, t) = �1(x) eδ1t + �2(x) eδ2t ,

v(x, t) = 1

a2
(�1(x) eδ1t + �2(x) eδ2t ),

where δ1 = (b2 +
√

�)/2, δ1 = (b2 − √
�)/2.

(ii) � = 0:

f (u, v) = F(α), α = b2u

2av − b2u
− ln

∣∣∣∣vu − b2

2a2

∣∣∣∣ + c,

u(x, t) = (�1(x) + �(x)t) eδt ,

v(x, t) = 1

a2
(δ�1(x) + �2(x) + �2(x)δt) eδt .

where δ = b2/2.

(iii) � < 0:

f (u, v) = F(α),

α = −1

2
ln

∣∣∣∣b1

a2
+

b2v

a2u
− v2

u2

∣∣∣∣ +
b2√
�

arctan

(
b2u − 2a2v

u
√

�

)
+ c,

u(x, t) = (�1(x) cos βt + �2(x) sin βt) eγ t ,

v(x, t) = 1

a2
((�1(x)γ + �2(x)β) cos βt + (�2(x)γ − �1(x)β) sin βt) eγ t .

where γ = b2/2, β =
√

−b2
2 − 4a2b1/2.

In subcase 3.2.2, �1(x),�2(x) and F(α) fulfil the compatibility conditions.
In particular, when a1 = b1 = 0, a2b2 �= 0, the sign invariants are ξ(u, v) = a2v and

η(u, v) = b2v.
Solving the sign invariant, we obtain

f (u, v) = F(α), α = u2

a2
− v2

b1
,

u(x, t) = a2

b2
eb2t�1(x) + �2(x), v(x, t) = eb2t�1(x),

where F(α),�1(x) and �2(x) satisfy

F�′′
2 − Fα�′

2 = 0, b2�1 + Fα�′
1�

′
2 − F�′′

1 = 0.

4. Concluding remarks

This paper deals with the application of sign-invariant theory to nonlinear RDs, and we get
many separation of variables solutions of two types. For the general case, we also get the
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exact solutions for the given HJ system {ξ(u, v), η(u, v)}. This method is the same as the
generalized conditional symmetry method [21–29]. And we can extend the HJ system

H1(u, v) = ut − α(u) + β(v), H2(u, v) = vt − γ (u) + η(v),

to obtain the explicit solutions. On the other hand, for giving RDs, we can also construct exact
solutions by sign-invariant theory.
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